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Theoretical and experimental investigations 
on elastic interactions between 
y'-precipitates in a Ni-AI  alloy 
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Showa-ku, Nagoya, Japan 

Elastic interaction energies between two identical inhomogeneous plates in an 
anisotropic matrix were calculated with respect to particle separation distance and 
alignment orientation on the basis of the microscopic theory of elasticity developed by 
Yamauchi and de Fontaine. Four types of plate-arrangement along the cube directions; 
two plates whose faces were mutually parallel, two plates which were arranged on a cube 
plane as a raft, two plates which were perpendicularly arranged with face-edge 
configuration and two plates which were perpendicularly aligned with edge-edge 
configuration were energetically stable, while other arrangements were not stable. 
Compared with experimental observations on the local arrangement of 3,'plates in a 
Ni-AI  single crystal, the calculated results were confirmed to be qualitatively correct. 

1. Introduction 
Understanding of the elastic interaction energy 
between precipitates in an anisotropic medium has 
progressed rapidly. This is of great interest with 
regard to the regular arrangement of precipitates in 
a matrix. In most of the previous works on this 
subject the homogeneous system, wherein the 
elastic constants of the precipitate were assumed 
to be equal with those of the matrix, have chiefly 
been derived [1-4] .  However, the regular arrange- 
ment of  particles due to elastic interaction is 
usually observed in the inhomogeneous system 
wherein the elastic constants of the precipitate and 
matrix are different. On the basis of the con- 
tinuum theory, Johnson and Lee [5] have 
theoretically investigated the interaction energy of 
the inhomogeneous sytem containing two identical 
precipitates, but their calculations have been 
limited to the case of spherical particles. Since a 
general expression of the stress field outside an 
ellipsoid has recently been developed by Mura and 
Cheng [6], quantitative estimations of the elastic 
interaction energy between two eUipsoidal homo- 
geneous particles may be carried out. Nevertheless, 
the computation has been conducted only for 

spherical particles as far as authors know, probably 
because of the difficulties in calculating the stress 
field outside a plate or rod-shaped inclusion. The 
precipitates which are regularly aligned by elastic 
interaction are usually not spherical in shape but 
parallelepiped or plate-like. Therefore, in order to 
understand the cause of the regular arrangement of 
precipitates the interaction energies of plate or 
parallelepiped precipitates should be calculated. 
The elastic interaction energy in an isotropic 
medium has been estimated by Perovic et  al. [7] 
for plate-shaped precipitates based upon the elastic 
strain field associated with dislocation loops. How- 
ever, the interaction energies obtained by them 
seem to be partly incompatible with the actual 
arrangement of precipitates, which will be shown 
in Section 4 of this paper. 

On the basis of the Fourier transform technique 
in the linear continuum elasticity formulation, 
Yamauchi and de Fontaine [8] have recently pro- 
duced a general expression for the elastic inter- 
action energy between small homogeneous clus- 
ters. In their treatment, although the cluster shape 
was assumed to be spherical for simplicity of cal- 
culation, tetragonality of the strain field has been 
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introduced. Therefore, the calculation of the 
anisotropic strain field associated with a generally 
shaped inclusion can be carried out approxi- 
mately. 

In the present paper, the calculation of the 
elastic interaction energies of two inhomogeneous 
ellipsoids contained in an artisotropic medium will 
be shown on the basis of the method of Yamauchi 
and de Fontaine [8] as functions of particle separ- 
ation distance and alignment direction, and then 
the experimental results on the microstructural 
configuration of plate shaped -/'-precipitates in a 
Ni-15at%A1 single crystal will be shown. The Ni-  
A1 alloy was chosen because the elastic constants 
of conjugating phases have been determined by 
many investigators. 

where q is the wave vector defmed by the relation: 
(47r/3)q 3 = 32(1r/a) 3, where a is a lattice constant 
a n d  r s and V ~ are the radius and volume of the 
cluster, respectively. Equation 1 was used in the 
present work as a basic equation to calculate the 
elastic interaction energy. 

The rl tensor in F ag has been introduced as the 
following diagonal forms [8] 

i 0!) qa = q~' = 77 1 for the parallel 

0 
land 

qa=r/ 
2. Theoretical basis for calculation of 

elastic interaction energies and 
According to Yamauchi and de Fontaine [8], the ( i  ~ )  
elastic interaction energy between two homo- t 0 0 
geneous clusters (or and /3) Eag contained in an qt~ = r/ 1 
elastically anisotropic continuum of total volume 
V is given by Equation 1 0 

E a~ = (1/210 Z F~(n)Sa(q)St3(q) exp(iqR) 

(1) 

where, R shows separation of the two clusters and 
n is the unit vector along the Fourier wave vector 
q. Fag(n), the elastic energy coefficient in Fourier 
space, is defined by Equation 2 

F~ ) = ~ag--~(G-lhkqb~ 

(2) ~ag a 
= Qm,,,n)knzm 

Gjk(n) = C m , , , n t n m ,  

in which Cjklr a is the elastic stiffness constant and 
~7ik is the distortion tensor which depends on the 
type of cluster considered. 

S(q), the Fourier space shape function, is given 
by Equation 3, using a shape function O(q). 

S'~(q)  = O~(q)[1 -- 5 (q)], (3) 

where 6(q), the delta function, is unity at the 
origin of Fourier space and zero elsewhere. When 
an s-cluster is assumed to be spherical in shape, 
the shape function Oa(q) is given by Equation 4. 

Oa(q) = 3 V a [sin (qrs) -- (qrscos (qrs)]/(qrs) 3, 
(4) 

case 

for the perpendicular case. 

The parameter t in these diagonal forms indicates 
the tetragonality of strain field and the scalar q 
shows the amount of strain. In the parallel case the 
tetragonality axes of the strain field of a and/3 
clusters are parallel to the [001] direction, while 
in the perpendicular case the axes of the ~ and/3 
clusters are along the [01 0] and [100] directions, 
respectively. 

It has been known that the spherical inhomo- 
geneity whose eigen strain is of pure dilatation 
produces an isotropic strain field, while plate-like 
inhomogeneity produces an anisotropic field [9]. 
Therefore, an evaluation of the tetragonality in the 
anisotropic strain field produced by a plate-like 
ellipsoid is conducted first, and then the inter- 
action energy between them is calculated. The 
tetragonality of the anisotropic field can be deter- 

T of mined from eigen strains (stress free strain) eij  

"an equivalent ellipsoid" which forms a strain field 
equivalent to that of an ellipsoidal inhomogeneity. 
The equivalent eigen strain e~. can be obtained 
from the simultaneous Equations 5 and 6 if the 

T* eigen strain of the inhomogeneous ellipsoid eij is 
experimentally given [9, 10]. 

O~j -~ e T G m ( e k l - -  ekz ) = Qk,(e~z --  e~;) (5) 

�9 - -  T 

c = ( 1 / 4 7 r ) C m n k t G t j m n e k t  ' (6) e~j 
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T A B L E  I Elastic constants  o f  conjugating phases and 
eigen strain used in calculation 

Elastic cons tant  (MN m -a) 

C~  11.24 • 104 Elastic cons tants  
C~: 6.27 • 104 of  matr ix  at 
C44 5.69 X 104 1023 K 

C *  16.66 • 104 Elastic cons tants  
C *  10.65 • 104 o f T '  at 
C* 4 9.92 • 104 1023 K 

e T* 5.63 • 10 -3 Eigen strain (Stress free strain) 

c where eij is the constrained strain, and C//m and 
C/~ m are the elastic stiffness constants of matrix 
and inclusion, respectively. Cij m has been con- 
cretely given as a function of the aspect ratio of an 
ellipsoid by Lin and Mura [11]. Thus ~ and t in 
the ~7 tensor are now represented by eT1 and era3~ 
eT1, respectively. 

This procedure inevitably' implies an assump- 
tion that the elastic strain field caused by the ellip- 
soidal cluster (c/a 4: 1) is identical to that of the 
spherical one, provided both particles have the 
same eigen strain e~, elastic constant Cij m and vol- 
ume V. This assumption is not generally correct. 
Nevertheless, the approximate calculation men- 
tioned above was conducted in the present work 
because the elastic strain energies of the sphere 
and ellipsoid are approximately equal unless the 
aspect ratio of the ellipsoid c/a deviates too far 
from unity, which will be shown in Section 3. 

3. Numerical calculations on the 
,),'-precipitates in N i - A I  alloys 

Numerical values used for the calculation are sum- 
marized in Table I, where the elastic stiffness con- 
stants at an ageing temperature of 1023 K for 3''- 
precipitates and matrix have been represented in 
our previous work [12]. The eigen strain (stress 
free strain) e T* of "),'-precipitates at 1023 K was 
evaluated from the lattice constants of a Ni solid 
solution containing 13.5 at%A1, which had been 
measured by X-ray diffraction in the previous 

work [12], and from the lattice constants of the 
Ni3A1 single phase [13]. 

The results of the calculations are now presen- 
ted. Table II shows the change of the equivalent 
eigen strain e~ with aspect ratio of homogeneous 
ellipsoid. It is obvious that the tetragonality t 
( =  T T ea3/e11) gradually deviates from unity with a 
decrease in aspect ratio. 

Here, the numerical errors caused by using the 
spherical shape function O(q) in the calculation of 
the anisotropic elastic strain field associated with 
the ellipsoid are examined. E ~162 in Equation 1 gives 
the elastic strain energy, Esele, of a single particle 
(a or/3) when the distance between the centres of 
the two particles R is put as zero [8]. The E~el~ of 
ellipsoids having various aspect ratios are represen- 
ted in Table II, which may imply numerical errors 
arising from O(q). An elastic strain energy E~el~ can 
be also obtained from the familiar Equation 7 
developed by Eshelby [10] as well as Equation 1. 
This gives accurate strain energies of ellipsoids. 

r __ I T* E~elf = (1/2)o~iei; . (7) 

The Eself should essentially coincide with E~]f for 
all aspect ratios, if the calculation of Es~lf is per- 
formed with the eUipsoidal shape function. The 

t numerical values of Eself for various aspect ratios 
of ellipsoids are also shown in Table II in the form 
of a ratio to Eself. It is obvious from the table that 
Eself nearly coincides with E~elf unless the aspect 
ratio deviates too far from unity. Thus it seems 
that, even if the spherical shape function | is 
used as a substitution of that of ellipsoid, Equa- 
tion 1 is quantitatively available to evaluate the 
elastic interaction energy between two oblate 
spheroids. 

T Using e o. shown in Table II, the interaction 
energy E c~ is now represented. Fig. 1 shows the 
change of E a~ with inte~centre distance between 
two precipitates for the case of c/a = 1 (sphere). 
The ordinate and abscissa are normalized by Eself 
and the particle diameter, respectively. From the 
figure the most energetically favourable position 

T A B L E  II Dependencies  o f e  if, tetragonali ty o f  strain t, Eself and E~elf/Eself with  aspect ratio of  ellipsoid 

T e ~  Tetragonali ty o f  (J m- 3) Eself/Esel f Aspect  ratio e33 Eself  ' 
c/a strain, t 

1.0 0.651 X 10 .2 0.651 • I0 -2 1.00 0.522 • 107 1.00 

0.7 0.673 • 10 -2 0.604 • i0 -2 0.90 0.519 • I0 ~ 1.00 

0.5 0.694 • 10 -2 0.558 • 10 -2 0.80 0.517 • 107 0.99 
0.3 0.721 • 10 -2 0.496 • 10 -2 0.69 0.513 • 107 0.96 
0.1 0.756 • 10 -2 0.409 • 10 -2 0.54 0.508 • 107 0.91 

1199 



-t"0.05 

o 

0 

-0.05 

~'i Aspect ratio= 1.0 
?. 

1. , / . - : "  
~t.~ / 

I I 

2 5 

Intercentre Distance, diameter 

�9 [100] 
,[10(3] after W.C.dohnson 

and J.K. Lee[5] 
o [I 101 
, [111] 

I 

4 5 

Figure 1 Elastic intezaction energies between 
two spherical particles as funct ions  of particle 
separation and alignment direction. 

of a neighbouring particle is found to be slightly 
away from the original sphere along the (100) 
cube directions. A chain line in Fig. 1 is the (100) 
interaction energy which has been calculated by 
Johnson and Lee [5], based upon the modified 
Eshelby method, for the case of spherical 7'- 
particles in Ni-A1 alloys. A little incompatibility 
between the fines can be seen. However, this 
results from the difference in the value of the 
elastic constants used in the computations, not 
from the calculation method since both lines were 
confirmed to be nearly equal when the same value 
of stiffness was used. 

Results for the case where plate-shaped 3"- 
precipitates (c/a = 0.5) are aligned in parallel are 
summarized in Fig. 2. Relative configurations of 
plate-arrangement are schematically drawn in the 
figure. It is clear from Fig. 2 that two plates whose 
faces are mutually parallel (face-face configur- 
ation) along the orthogonal (100) directions [(e) 
of Fig. 2] interact most attractively, and then the 
case of two plates which are arranged on a plane as 
a raft along the (100) directions [(d) in Fig. 2] is 

next in order of attractive interaction. Whereas 
other arrangements [(a), (b) and (c) in Fig. 2] are 
repulsive. 

Fig. 3 shows the calculated results for perpen- 
dicular cases. The arrangements (d) and (e) show 
energetically favourable positions, while arrange- 
ments (a), (b) and (c) are not stable. 

On the basis of the stress field of dislocation 
loops, Perovic et al. [7] have evaluated the elastic 
interactions between two identical plates to be 
repulsive for the mutually parallel case [(e) of Fig. 
2], and attractive for the mutually perpendicular 
arrangement [(e) of Fig. 3]. This is opposite to our 
result for the mutually parallel case. Electron 
microscopic observations on the actual configur- 
ation of 3,'-precipitates will be shown in the next 
section. 

4 .  C o m p a r i s o n  w i t h  s o m e  e x p e r i m e n t a l  

o b s e r v a t i o n s  

The results presented in Figs 2 and 3 are discussed 
below. Fig. 4 shows an example of dark-field 
images of "y'-(Ni3A1) precipitates, taken from a foil 
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Figure 3 Elastic interaction energies for a per- 
pendicula~ arrangement. 

which was prepared from Ni-15at%A1 single 
crystal aged at 1073 K for 1800 min. The foil was 
cut parallel to the (100) plane. Many plate-shaped 
7'-precipitates, about 0.4 in aspect ratio, are regu- 
larly aligned along the orthogonal (100) direc- 
tions. Particle-arrangement can be classified into 
four types which are represented in Fig. 5a to d. 
In Fig. 5 a the plates are seen to be arranged in the 
(100) plane along the [010] direction. This type 
of arrangement is dearly seen from Fig. 2 to be 
stable. Fig. 5b shows a mutually perpendicular 
configuration (face-edge), where one particle is in 

Figure 4 A dark-field image of ~'-plates in a Ni-15at%A1 
single crystal aged at 1073 K for 1800 rain. 

the (100) and the other in the (01 O) plane, which 
corresponds to (e) of Fig. 3. A practical example 
of the arrangement of (d) of Fig. 3 is found in Fig. 
5c. Fig. 5d shows an example of the mutually 
parallel case (face-face configuration), where the 
two plates are seen to be arranged in the (010) 
plane. In this case it may be considered that, being 
a fairly large distance away, each plate is outside 
the elastic strain field produced by the other 
particle. However, the centre to centre distance of 
the particles is nearly equal to those in Fig. 5 a to 
c. Hence, it is understood that the two particles in 
Fig. 5 d are located in their energetically favour- 
able positions indicated in Fig. 2. This face-face 
configuration was reported by Perovic et al. [7] to 
be repulsive, but this is obviously incompatible 
with Fig. 5d. Further experimental evidence 
clearly showing that the face-face configuration 
of particles is energetically stable is given. Fig. 6 a 
and b are bright-field micrographs of 7'-particles 
taken from a thin foil of Ni--4Oat%Cu-5.0at%Si 
alloy aged at 773K for 1000min. Structural 
changes with ageing in this alloy system have been 
previously reported [14], wher the 7'-particles 
(NisSi) are nucleated at a later stage of ageing. In 
Fig. 6a the ~,'-particles are sparsely dispersed 
because of a small amount of Si in the alloy. Fig. 
6b shows enlarged precipitates. The morphology 
of the 7'-precipitates should be noted. It can be 
seen that all precipitates, of which the aspect ratio 
is about 0.6, are separated into two mutually 
parallel plates [in this photograph the crevices 
parallel to the [01 1] direction are only observable 
because of the foil plane (01 1)]. Such pairing of 
7'-particles was experimentally verified to take 
place when ageing was performed inside but near 
the miscibility gap of phase transformation of this 
alloy system. Each pair of ?'-plates is almost iso- 
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Figure 5 Four types of local arrangement of-r'-plates in a Ni-15at%A1 single crystal aged at 1073 K for 1800 min. 

Figure 6 Dark-field micrographs of 3,'-precipitates (Ni3Si) in a Ni-40at%Cu-5at%Si  alloy aged at 773 K for 1000 min, 
noting paired precipitates. 
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lated from other pairs, as can be seen in Fig. 6a,  so 
that the two pairing plates seem to be elastically 
affected only by its partner's elastic strain field 
without  any other elastic influence due to third ol 
fourth particles. This is therefore a typical 
example o f  the " two-body problem" that the 
theoretical calculation dealt with. Since this alloy 
system has almost the same elastic constant and 
eigen strain values as those of  the N i -AI  alloy sys- 
tem [12],  the elastic interaction energies calcu- 
lated for the 7'-particles of  Ni-A1 alloy ought to 
be qualitatively applicable to the 7'-particles in the 
N i - C u - S i  alloy system. Consequently, the paired 
~/-plates shown in Fig. 6 are sufficient evidence for 
the theory that mutually parallel plates along the 
cube directions are in energetically stable 
positions. 

5. Conclusions 
Numerical calculations on the elastic interaction 
energies between two identical inhomogeneous 
plates in an anisotropic medium were derived, 
based upon the microscopic elasticity theory as 
functions o f  particle separation distance and align- 
ment orientation. Four types o f  arrangement along 
the orthogonal (1 00) directions are energetically 
favourable. These are (a) two plates with mutually 
parallel faces, (b) two plates arranged in a cube 
plane as a raft, (c) two plates which were perpen- 
dicularly aligned with face-edge configuration and 
(d) two plates which were perpendicularly 
arranged with edge-edge configuration. Other 
arrangements were not stable. Compared with 

experimental observations on the local arrange- 
ment of  7'-precipitates in a N i - A I  single crystal, 
the calculation results were confirmed to be quail- 
tatively correct. 
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